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The contact problem of the frictionless penetration of a punch with strip-shaped section into the surface of a 
linearly-deformable base protected by a thin elastic layer (covering) of variable thickness, the stiffness of 
which is comparable to or smaller than that of the supporting elastic body, is investigated. A Fredholm integral 
equation of the second kind is obtained for the unknown contact pressure with a coefficient in front of the 
leading term that is a fairly arbitrary function of the longitudinal coordinate. To solve it the Bubnov-Galerkin 
projection method is used in which the coordinate elements are chosen to be a system of orthogonal 
polynomials and delta-shaped functions [l, 2]( variationaldifference method), together with an algorithm for 
the required asymptotic expansions [3] when the above-mentioned coefficient is small. In the special case of 
an elastic half-space protected by a covering of constant thickness, the results obtained are compared with the 
corresponding characteristics given in [4]. 

1. We first consider the three-dimensional problem of the action of a normal load CJ = eiayo(x) 
distributed along a strip-shaped region Ix 1 s a, Iy 1 < - on the upper surface of a thin elastic layer of 
variable thickness 0 s z d h(x) (0 < H1 6 h(x) s Hz, h = J&z-’ Q l), rigidly attached to a base. The 
function h(x) is taken to be at least continuous when Ix 1 c 00. 

The problem reduces to integrating the Lam6 equations when there are no body forces 

(I-2v)Au+grad O-O, 
au au aw 

8--+-+- 
ax ay a2 

with boundary conditions 

z-o:u=w-w-o (Ixl<oo, IYl<W) 

2 - h:t, = tyz -0 (IXl<o3, lyl<w) 

uz = e-ib(x) (Ixla a), uz = 0 (IA> a, lyl< m) 

(the stresses in the layer vanish at infinity), where 

(1-l) 

(1.2) 

(1.3) 

In formulae (1.1) and (1.3) u = {u, IJ, IV) is the displacement vector of points in the elastic medium, 
while G and v are its shear modulus and Poisson’s ratio. 

We shall look for the unknown functions occurring in (1.1)-(1.3) in the form 

{u,w,w) = (u*,w*,w*}e-‘By 0.4) 
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Introducing the dimensionless variables and notation 

X-M*, 
h(x) l-2v 

z-H,z., hr(xr)=-, E=- 

H2 2(1 -v) 

and then substituting (1.4) and (1.5) into the given relations (and dropping the asterisks), we obtain 

A2 [kn -E(a~>2ul + A(1 - &)(W,z -ih@‘U),, +EU,, = 0 

h2 i&Z),, -(af%2V] - ih@(l- E)(W,Z +hU,, ) + EV,ZZ - 0 (1.6) 

Eh* [W,, -(U~)2Wl + A(1 - E)(U,, -ifh),, +w,, = 0 

z-o: u-v-w-0 (IXl<W) 

z - h: (u,, +hw,, > - (v,, -ih&zw) i o (1x1< co) 
(1.7) 

[w,, +h(l- 2E)(u,, -ifkzu)] - 
EH~G-‘u (1x1s 1) 
o 

(Ixl> 1) 

Prior to the asymptotic analysis of expressions (1.6) and (1.7) we first note the inequalities [5] 

c-Ol~l<C<C% CA41 (C-const) WV 

The second inequality is the “applicability condition for the theory of thin plates” and states that the 
external load is smoothly distributed over the surface of the covering z = h. 

We represent the solution of system (1.6) satisfying conditions (1.7) in the form 

u - @J(x.z) + O(k), v - W&Z) + O(h), w = Iyx,z) + O(h) (1.9) 

Substituting (1.9) into (1.6) and using (1.8), in the zeroth approximation we obtain 

# ‘U -0, Y,, -0, r,u -0 

from which we find 

+ - A&x)+ A,(x)z, ‘4’ - B,,(x)+ 4(x)z, r - c&)+,C,(x)z (1.10) 

Formulae (l.lO), in agreement with (1.7X1.9), gives 

&I(X) - A,(x) - Mx) - B,(x) - c,(x) - o 

c,(x) - EH,G-‘a(x) (1.11) 

Substituting (1.11) into (1.9) and (l.lO), puttingz = h(x) and returning to the former variables and 
notation (1.4) and (1.5) in the resulting expressions, we write 

w(x,y,h(x)) - EC-‘h(~)o(x)e-‘~~ + O(h) 

u -2) - O(h) (1.12) 

Equations (1.12) show that a relatively thin elastic layer of variable thickness, attached to a rigid base 
can be modelled by the Fuss-Winkler support equations with foundation coefficient cG%(x)eiey. 
Note that this result remains valid [6] in the case of a combined double-layer linearly-deformable base when 

n-O(hrn), ( m>o, n-A, 0 
G Go 

80 
--, e,-- 

1-v 1-Q 1 
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Here Go, v. are the elastic characteristics of the foundation, whose settling under the action of the 
load 

0, -e -‘%(x) (IX14 a,lyl< 03) 

has the form [7,8] 

(1.13) 

k(t) - L - 25c _IK(u)e”ds, u - dw (1.14) 
03 

In relations (1.13) and (1.14) H is the characteristic parameter of the linearly-deformable 
the main elastic body and k(u) is the symbol if its kernel. . 

base of 

Below we consider the case when A = Ha-’ P A, while K(s) is abounded function that is positive on 
the real axis and has the following asymptotic properties 

K(s) - A (s + 0, A - const) 

K(s)-lsl-’ +O(M6) (IsI-' ~16 2 3) (1.15) 

We shall now study the contact problem of the fiictionless penetration by the force PeiBr, with 
eccentric application b, of a punch with strip-shaped cross-section, into the surface of a linearly- 
deformable base, protected by a thin “soft- elastic covering of variable thickness h(x). We shall 
assume that the width of the contact domain is constant and equal to 2u, and by virtue of the restriction 
h(x)u-’ < h 4 1 the contact condition 

wg +w -g(x)e--'BY (1x1s a) (1.16) 

can be imposed on the surface of the linearlydeformable base z = 0. 
Substituting the expressions for the vertical displacements (1.12) and (1.13) into relation (1.16) and 

introducing the dimensionless quantities 

x’ - XC’, 5’ - EJZ-‘, 4(x’) - a(x)fg’, f(x’) = g(x)c.Y’ 

p(x’) - &[a(1 - v)]-'h(x), P’ - P(u~~)-‘, 6’ = bu-’ 

we arrive at an integral equation for the amplitude of the contact pressure q(x) (I is the unit operator) 

b(x)1 + F)q - f(x) (Ixla 1) (1.17) 

(1.18) 

In formulae (1.17) and (1.18) and below the prime is omitted. 
The statement of the problem must be completed by the formulation of the equilibrium conditions 

P = &)dr, Pb - ;xq(x)dr 
-1 

(1.19) 

which serve to find the rigid displacement of the punchf(0) and its angle of rotationf’(0). 

2. Before solving integral equation (1.17), (1.18) we present a series of arguments establishing its 
correct solvability in the space of square-integrable functions Lz(-1, 1). Note that by virtue of the 
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properties of the kernel symbol K(S), formulae (1.15), and also the positivity and boundedness of the 
function u(x), we have the two-sided estimate [9] 

~~(X)~~ s (R&q) s ~~(x)~~ (2.1) 

Rq = (u(x)1 + F)q, const = m a 0, const - M < m 

From inequality (2.1) the operator R is bounded and positive-definite in Lz(-1, 1), which implies 
the existence of a bounded inverse operator R-i , i.e. the unique solvabili~ of the original equation in 
Lz(-1, 1). Here the correctness relation 

Ik(x)ll~~ m-’ IlfCGll~ (24 

holds. 
Moreover, one can show that iff(x) E C(-1, 1), then also q(x) E C(-1, l), where C(-1, 1) is the space 

of functions continuous in [-1, 11. 
We represent the approximate solution of integral equation (l-17), (1.18) in the form 

4Pt(x)'j~ouj~j(x) 
_ 

cp&) - 
i 

2[1-(x+l)K’] (XE(-A--l+h)) 

0 (XE(-l,-l+h)) 

TN(X) - 
{ 

2[1+(x-l)h--‘1 (XE(l-h,l)) 

0 (XF(l-&I)) 

(2.3) 

cp”(X) = 1 l-(X-x&* (xE(x,-h,x, +A)) 

0 (XF(X” -h,x, +h)) 

Here (q(x)> is a system of coordinate delta-shaped functions that is extremely dense in Lz(-1, 1), 
and the nodes x,(j = 0 - N) cover the interval i-1, l] with step h = 2N-‘, and% = -1, xN = 1. 

The coefficients Uj in expansion (2.3) are found from the condition that the discrepancy 

is orthogonal to the first N + 1 terms of the sequence {cpi(x)) 

(*Nv4)i)L* -0 (i-0,1,2, . . . . N) (2.4) 

As a result we arrive at an (N + l)-order system of linear algebraic equations 

~(R~~,~i)~~ aj =(flTi)Ll (i=o>1*2, ...,N) 
j-0 

(2.5) 

On the basis of inequalities (2.1) and (2.2) we conclude [2, lo] that a number N. exists beyond which 
(i.e. when N > N,) an approximation qdx) of the form (2.3) is uniquely defined by relations (2.4). 
Moreover, we have the estimate 

which ensures the convergence of qdx) to the exact solution q(x) in the metric L,(-1, l), from which 
it follows that Uj + q(Xj) at the internal nodes and 2~0, 2uN + q(xo), q(xN). Ail this implies the 
applicability of the variational-difference method to investigate integral equations of the type (1.17), 
(1.18). 
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A key point in the algorithm being used is the estimate of the coefficients of system (25) expressed 
as triple integrals. However, application of the splines (2.3) to the original problem allows one to 
reduce the imputations effort dramatically by reducing the quadratures to single integrais. Thus, 
starting with the definite integrals 

we write 

(2.6) 

eON -eNO [C2(s) t S2(s)l cm y t 2C(s)S(s) sin? ds 

(where in the first formmae we have used the delta-shape of the sequence of coordinate functions), 
We note that a somewhat different m~i~ca~on of the ~ation~~~eren~ method has been 

previously proposed [Z], according to which the coordinate functions in formula (2.3) have the form 

cpj(X)=cp ( ~ 1 2 , xj --l*$-2j), h*---- 
N-l.1 

cp(x) I 1 1 -IA iI-+ 11 

0 (Ixl> 1) 

and the nodesxj are internal points of the segment [-I, 11. This choice of element system @(x)} and 
the nodes xj gives us the possibility of representing the coefficients cg and eii in the form of the sixth, 
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seventh and eighth formmae of (2.6) for all i and j with values running from 0 to N. The calculations 
of the mechanical characteristics of the problem of Section 4 show that these two modifications of the 
v~ation~~eren~ method agree with one another to a practical level of accuracy, so that below we 
shall confine ourselves to the first version. 

In many cases [7,9] the basis functions q(X) are taken to be a system of orthogonal polynomials (the 
orthogonal polynomial method). Here, for example, it is desirable to put 

where Pi(x) are L.egendre polynomials. We obtain for the coefficients of system (25) the expressions 

(f,9i)& - ;f(x)&*(x)dx 
(2.7) 

eii - (-1)l”21+li’21A&2i + 1)(2j + 1) ;K(u)J,,K(~)J,,~ 
0 

(where [o] is the integer part of cl). 
When estimating the coefficients eii of the form (2.6), (2.7) there is the problem of computing 

improper integrals of rapidly oscillating functions. An algorithm in [ll] helps one to overcome this 
difkulty: it amounts to constructing a quadrature formula with an exact treatment of the oscillating 
component. 

After&rdingtheai(j=O,l,..., N), from system (2.5) and constructing the exact solution of Eq. 
(1.17), (1.18) according to (2.3) one can determine from formulae (1.19) the integral characteristics of 
this solution. Thus, in the first case we obtain 

and in the second 

Plh~oj. Pb-hsXjaj 
j-0 j-0 

(2.8) 

3. The method of Section 2 for solving the integral equation (1.17), (1.18) is efficient for sufficiently 
large values of the parameter p(x). When p(x) + 0 ( 1x1 s l), as is shown by numerical analysis of 
specific problems, the matrix of system (2.5) becomes ill conditioned, and the calculation becomes 
unstable. In this connection we shall give an algori~ for ~nst~ct~g the solution of the given 
equation that is effective for small values of the parameter p(x). We will confine ourselves to finding 
the leading (zeroth) term of the asymptotic expansion of this solution. 

Putting p(x) = 0 in (1.17) we can write the degenerate integral equation 

It was proved in [9] that if flc) E HT(-1, l)(% < a, d l), the integral equation (3.1) is uniquely 
solvable in L,(-1, 1) (1 c p c 2) when A E (0, -) and its solution has the following structure 

40 (xl = 
w(x) 

7777 
l’ \ ~(X)EH&l*l) 12 < y < 11, P-2) 

where Ha, (-1, 1) is the space of functions whose mth derivative satisfies the Holder condition with 
index a for 1x1 d 1. 

To solve Eq. (3.1) for any values of the parameter A E (0, -) one can, for example, use the 
orthogonal function method [9}. In accordance with the asymptotic formulae (1.15) we can therefore 
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represent its kernel in the form 

k(t) = IG-'IC~(~A-~ > + t(t) 

l(t) - e -““I(&+ 00, K > O), f(t)EH,"(--03,@J) (a - 1 -E) 

P-3) 

Here &-&I-‘) is the Macdonald function, reflecting all the main properties of the kernel k(f), and 
the supplement I(t) plays a secondary part. 

Finding the regular part of the solution CO(X) in (3.2) in the form of a Fourier series in periodic 
Mathieu functions cei(arcos x, -r) (r = (24h)- 2 in the interval f-1, 11, and exactly inverting the 
principal part of the kernel of integral equation (3-l), (3.3) using the spectral relation 

we arrive at an infinite system of linear algebraic equations in the unknown coefficients of this 
expansion. To solve it we apply and justify the method of reductions. 

We now consider the integral equation 

(3.4) 

in place of (1.17). 
By an outer region we mean the interval 

-I+ m,l.k(-1) c x s 1 - m2p(l) 

in which we can take the degenerate solution (3.2) to be a sufficiently exact solution of Eq. (3.4). 
Internal regions are small nei~~urh~ds of the points x = 21 with d~ensions m&-l), m&l) 
(ml, m2 - 1); in these regions the effect of the covering on the distribution of contact stresses under 
the punch is comparable with the effect of the deformability of the elastic base. In the inner regions it 
is necessary to construct solutions of boundary-layer type “matched” at the boundary regions x = ? 1 
amjlt( 5 1) 0’ = 1,2) to the degenerate solution qo(x). 

We confine ourselves to finding the boundary-layer solution only in the neighbourhood of the right- 
hand end of the punch x = 1, noting that the situation at x = - 1 is similar. We tr~sfo~ (3.4) using 
(3.1) as follows: 

cL(x)qtx) + W - F+M - qo) - W)dMx~ 1) (35) 

Bearing in mind that when rnl.t Q 1 (p = p(l), rn2 = m) 

and that the function q(x) at the boundary x = 1 - mp between the inner and outer region is 
matched to q*(x), we look for a boundary-layer type solution in a neighbourhood of the point x = 1 in 
the form 

Then the matching conditions acquire the form 
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from which it follows that 

x(O) - 1, x(m) - l/J;;; On9 l), q(O) = o(l)/& (3.7) 

Substituting (3.6) into (3.5), going over to new variables t, z = (1 - Q,L-~({), and letting p tend to 
zero for fixed t and ~IPZ 4 1, we obtain, in accordance with repre~n~tion (3.3) and the de&rite integral 

WI 

an integral equation governing the function x(t) = ark]-’ 

x(r)-IjX(r)lnY 
I I 

ht-1 (Ost<c*l) 
ZO 

(3-8) 

Note that the same EZq. (3.8) is also used to find the boundary layer at the other (x = -1) end of the 
punch. 

The exact solution to integral equation (3.8) has the form [9,13] 

x0) - +-TIWPVQ. X(P) - Pr2(P)W) 
L 

“f _ lJ2g+’ 

s(P)= !!I\’ 2ni 
r(-n--p+J$)r(-n+/3+1) 

f(-n - pjrf-fi + p + g) 

where the contour L is the line Rep = ~(0 < K < l/2). 

After satisfying integral equations (3.1) and (3.8) the leading term of the uniformly fitting solution 
of Eq. (1.17), (1.18) for small values of the parameter u(x) (1x1 < l), by virtue of relations (3.7) can 
be written in the form 

q(x)- l T-1 w(x) N-1) 
1-x2 

-+iL-yJl+x]+ 

P-9) 

Finally, knowing the function q(x) of the form (3.9), one can calculate the force P and torque Pb 
applied to the punch using formulae (1.19). 

4. We will present numericai calcuIations of the main mechanical properties of the contact problem posed in 
Section 1. The linearly-deformable base is an elastic half-space and the thickness of its protective covering has the 
form 

vifx)-Fofl-rt cos ar) &l<l) 

Here the representation K(s) = s-l holds for the symbol of the kernel of the original integral equation (1.17), 
(1.18), and using it according to formulae (1.14) when A + 00 we obtain 

(4.1) 
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Table 1 
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PO 

2 

1 

0.5 

0.1 

0.01 

x = 0.0 0.2 0.4 0.6 0.8 I Pf’ 

0.359 0.360 0.364 0.771 0,385 0.420 0.745 
0.356 0.358 0,361 0.368 0.38 1 0.411 0.740 
0.623 0.270 0.257 0.645 0.340 0.298 0.789 
0.63 1 0.280 0,264 0.657 0.345 0,308 0,797 

0.556 0.560 0.570 0.590 0.629 0.739 1.19 
0,550 0,553 0.563 0.582 0.620 0.724 1.18 
0.920 0.42 I 0.403 0.980 0.546 0.525 1.23 
0.931 0.43 1 0.412 0.995 0.558 0,535 1,23 

0.76 1 0.767 0,789 0.833 0.927 1.224 1.70 
0.748 0,755 0.776 0,819 0.907 1,196 1.67 
1.185 0.587 0.568 1.301 0.811 0.877 1.71 
1.192 0.595 0.576 1.315 0,822 0.885 1.71 

1.038 1.050 1,092 1.195 1.485 3.090 2.63 
1.015 1.026 1.069 1.172 1.441 3.036 2.55 
0.957 0.968 0.989 1.066 1.294 1,768 2.19 

1.048 1.052 1.067 1,156 1,351 4,023 2.56 

We put f(x) = f = const, c = 1, a = 10 in (1.4). Ihble 1 records the values of the contact pressure q(x)f’ 
and force @-’ applied with eccentricity b = 0, estimated from formulae (2.3), (2.8) and (2.9) for various values of 
the dimensionless parameters h and n. The results of the first and second rows were, respectively, obtained for 
B = 0 by the variational-d~ere~ method with step h = 0.1 and by the orthogonal ~~orni~ algorithm. Similar 
values for q = 0.5 and 14, = 2.1,0.5 are given in the thiid and fourth rows. It is clear that the given characteristics 

differ from one another by no more than 3% and diier from the corresponding quantities estimated in [4] at q 
= 0 by no more than 5%. 

Note that when using the variational-difference method to solve integral equation (4.1) there is no need 

to calculate alI the eij coefficients from formulae (2.6). It is sufficient just to estimate the diagonal elements 
e& = 0 - N), and then to find the rest using the delta-form of the coordinate functions (2.3). We have 

eii 0 h*n-*KO[C(Xi -Xj)l (i H i) 

This form of the coefficients eii was used in [l], demonstrating the close interdependence of the algorithms 

developed in [l, 2J, despite their apparent differences. 
As was remarked in Section 3, to solve integral equation (4.1) for small values of u(x) it is necessary to use the 

method of matched asymptotic expansions, which according to the above calculations works satisfactorily when 

p(x) < 0.5. The last two rows of ‘Ihble 1 give the values of a uniformly fitting solution q(x)f obtained from (3.9) 
when q = 0 and ps = 0.1, 0.01, and also the relative strength of the embedding force m’, estimated according to 
the first condition in (1.19). 

In summary we conclude that the nume~~-~~~ic methods for solving integral equation (X17), (1.18) 

developed in this paper cover all of the possible range of variation of the dimensionless parameter p(x) and can 
be used to investigate more complicated problems in the theory of elasticity and mathematical physics with mixed 

boundary conditions. 
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